GridInSight: Monitoring Electricity Networks Using Visible Lights

Zeal Shah, Alex Yen, Ajey Pandey, Jay Taneja

Email: zshah@umass.edu

INTRODUCTION

- Cameras may potentially enable widespread power quality data acquisition at low cost.
- We demonstrate the use of off-the-shelf cameras to detect phase, frequency, and voltage of the grid powering artificial lights.
- Rolling Shutter Sensor: Inter-row delay provides high temporal sampling.
- Image Data Acquisition for frequency & phase detection:

RESULTS

Pictures taken of wall illuminated by light sources.

FREQUENCY MONITORING

• Frequency measuring techniques-(a) Peak finding, (b) Power Spectral Density, (c) Sine-fitting.

• Potential Application: Backup generator detection.

PHASE DETECTION

• Voltage

CHALLENGES

- On-the-fly bulb identification.
- Aging of bulbs might affect voltage measurements.
- Not all LEDs behave as per our model.

LIMITATIONS

• Frequency measurement deterioration with distance.

Indoor Scenes

• Potential Applications:

Electric-phase mapping, updating old phase maps, backup generator detection, phase balancing studies.

VOLTAGE MONITORING

• 150 images per bulb captured at

115 120

Voltage(V)

125

130

135

140

 Phase measurement deterioration due to poor defocusing.

FUTURE WORK

- different voltage and distance values.
- Two-level regression model per bulb.
 - Level 1: Eliminates effect of distance on intensity,
 - Level 2: Learns the relation between intensity and voltage.

Potential Applications:

Detecting brownouts & areas with poor power quality, predictive maintainence.

KEY REFERENCES

[1] Federica B. Bianco, Steven E. Koonin, Charlie Mydlarz, and Mohit S. Sharma. 2016. Hypertemporal Imaging of NYC Grid Dynamics: Short Paper. In Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient BuiltEnvironments (BuildSys '16).

105

110

100

[2] M. Sheinin, Y. Schechner, and K. Kutulakos. 2017. Computational Imaging on the Electric Grid. In The IEEE Conference on Computer Vision and Pattern Recognition(CVPR).

[3] M. Sheinin, Y. Schechner, and K. Kutulakos. 2018. Rolling shutter imaging on the electric grid. In 2018 IEEE International Conference on Computational Photography(ICCP). IEEE, 1–12

STIMA Lab, Electrical and Computer Engineering, University of Massachusetts, Amherst

- Conduct more field experiments. Localization of light sources on a map.
- Study the effect of a camera post processing software.
- Develop a single universal model for voltage predictions.

