Zeal Shah

Ph.D. Student


Hello! My name is Zeal and I am a second year Ph.D. student in the Electrical & Computer Engineering department at University of Massachusetts Amherst. I work at the Systems Towards Infrastructure Measurement & Analytics (STIMA) lab, advised by Prof. Jay Taneja. I hold a master’s degree in Energy Science, Technology & Policy with concentration in ECE from Carnegie Mellon University. My research at UMass Amherst is focused on harnessing the power of data and technology for developing low-cost energy infrastructure monitoring and management solutions. Additionally, my work also involves using mobile systems, remote sensing, machine learning & deep learning for acquiring data and information in low-data settings.

Work Experience

Graduate Research Assistant

STIMA Lab, UMass Amherst | Aug 2018 - Present

  • Research Focus: Data science and AI for social good, technology for development, sustainability, energy access.

Data Science Intern

SparkMeter, Inc. | Feb 2018 - Sep 2018

  • Developed a monitoring tool using Grafana and SQL for real-time monitoring of deployed smart meters, base stations and cloud services to facilitate efficient troubleshooting.
  • Analyzed smart meter data to track the evolution of electricity quality and reliability across 68 sites spread over Sub-Saharan Africa and South-Asia with 10 to 500+ customers per site.
  • Provided need based data and analysis support to different teams.

Engineering Intern (Remote)

Nikola Power | Jun 2018 - Jul 2018

  • Developed an optimal battery dispatching algorithm to minimize the operating cost of residential solar grid+storage system by controlling charging & discharging of the battery.
  • Assisted in development of short-term load forecasting algorithm for company’s residential energy management system product.

Graduate Teaching Assistant

Carnegie Mellon University | Jan 2017 - Dec 2017

  • Head TA for two senior level courses: Fundamentals of Power Systems and Embedded Systems.
  • Delivered technical lectures on modeling & simulation of power systems, and solving computational power systemsproblems like optimal power flow in MATLAB.

Data Science Intern

SparkMeter, Inc. | May 2017 - Aug 2017

  • Developed a suite of interactive analytical reports that provide actionable commercial, financial and technical insights into grid operations to company’s utility customers.
  • Created an outlier detection and removal program to filter noise recorded by smart meters.

On-going Projects

Deep Learning for Mapping Buildings in Satellite Imagery

Process massive satellite imagery datasets on GPU clusters and apply deep learning techniques to map buildings in these images, to support infrastructure planning efforts in emerging economies.

Monitoring Electric Grid Reliability Using Satellite Data

Develop electric grid reliability measurement indices using nighttime-lights satellite data to enable grid reliability monitoring at a global scale; create an API to make indices publicly accessible.

Tracking Infrastructure Recovery Post Aerial Bombing

Develop mechanisms to track, quantify, and map energy infrastructure recovery in conflict affected regions using satellite data, to help humanitarian efforts.

Past Projects

GridInSight: Monitoring Electricity Using Visible Lights

Created a low-cost solution to non-intrusively monitor grid power quality and phase using smartphone cameras to facilitate better management of grids in developing countries.

  • Demonstrated the use of cell phone and machine vision cameras to non-intrusively monitor electric-grid frequency and phase with errors of 1-2%, and 2-10%, respectively.
  • Developed a novel technique that uses cameras to passively monitor voltage, and obtained an error of 8-15% for measuringvoltage of a light bulb that our system had not seen previously.

Smart Metering Data For Tracking Access to Electricity

  • Analyzed smart meter data to track the evolution of electricity availability, reliability, quality, and grid capacity across 68sites spread over Sub-Saharan Africa and South-Asia with 10 to 500+ customers (smart meters) per site.
  • Quantified the growth of energy access across sites by linking smart meter data analysis to World Bank’s Multi-tier Framework for household electricity supply.

Selected Course Projects

Multi-tier Online Book Store

Developed a multi-tier web application using Flask in Python and added features like caching, replication, load-balancing, fault tolerance and recovery. Link

Where, When and Watt?

Created a program to predict occupancy of different rooms based on appliance power consumption data and achieved 93% model prediction accuracy.

New York State Energy Brief

Analyzed multiple open-source datasets to study and predict NY’s energy consumption in residential, commercial, industrial and transportation sectors.

Solving Unit Commitment

Implemented mixed-integer linear programming (Branch & Bound method) to solve a 24-hour unit commitment problem using data from multiple generators and demand data.

Energy Policy & Economics

Studied and delivered policy evaluation write-ups on energy security, clean power plan, emissions from internationaltransportation, 100% renewable vs. 0 emissions, and renewable integration in regulated vs. deregulated electricity markets.

Analysis of Energy Transport & Storage in Switzerland

Studied and presented a detailed analysis of energy transmission and storage in Zürich and Canton of Valais; Proposed solutions to reduce congestion and achieve their future energy goals


Conference Papers

  • Zeal Shah, Alex Yen, Ajey Pandey, and Jay Taneja. “GridInSight: Monitoring Electricity Using Visible Lights.” In the 6th ACM International Conference on Systems for Energy-Efficient Built Environments, Cities, and Transportation (BuildSys’19), November 2019. Best Paper Nominee.

Posters & Presentations

  • Zeal Shah, Jay Taneja. “Monitoring Electric Grid Reliability Using Satellite Data.” In the 6th ACM International Conference on Systems for Energy-Efficient Built Environments, Cities, and Transportation, November 2019. Best Poster Award. Link
  • Zeal Shah, Alex Yen, Ajey Pandey, Jay Taneja. “GridInSight: Monitoring Electricity Using Visible Lights.” In the 2nd Annual ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS’19), July 2019. Link
  • “Smart Metering Data For Tracking Access to Electricity.” SparkMeter's keynote at the 7th Microgrid Global Innovation Forum, September 2018. (Presented by Jon Thacker)
  • Zeal Shah, Yoolhee Kim, Anand Prakash, Vasu Nambeesan. “Occupancy Prediction Based on the Power Consumption Patterns.” In the Carnegie Mellon University Symposium on Machine Learning in Science and Engineering, May 2017. Link
  • Zeal Shah, Siddhartha Joshi. “Operation and Analysis of a Bi-directional DC-DC Converter for Efficient Charge Control of Battery in a Microgrid.” In the 50th IEEE Industry Applications Society Annual Meeting, October 2015.